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1 Preface

The study of partial differential equations (pdes) has been around since
the 18th century, and it is one of the largest subdisciplines of mathemat-
ics. Its roots are in applications and in mathematical modeling of physi-
cal phenomenon. Our basic physical laws are codified in pdes. Examples
come from fluid mechanics (e.g. the Navier-Stokes equations, lubrication
theory), solid mechanics (e.g. beam and plate equations), electrodynamics
(e.g. Maxwells equations), heat and mass transfer (e.g. diffusion equation),
genetics and population dynamics (e.g. Fishers equation and more general
reaction-diffusion equations), neurobiology (e.g. Hodgkin-Huxley equations),
financial engineering (e.g. Black-Scholes equation), etc. PDEs have helped
advance areas like probability theory, complex analysis, differential equations,
Lie algebra theory, to name a few core mathematical areas.

This introductory text covers a small, but important part, of the subject,
namely exact methods for solving a few classical problems in some restricted
settings. We concentrate on some linear pdes where we can find explicit solu-
tions. We address some questions in a qualitative manner from time to time,
but this is not a theory course. It is mainly an analytic course of finding
explicit representations for solutions. Where theorems are presented, they
are meant to summarize a concept or properties of a particular subject. To
get the most out of this course of study it is expected that you learn and un-
derstand the content of theorems, both to give some mental structure to the
course, and understand why we do certain procedures the way we do them.



That said, students often find introductory partial differential equations dif-
ficult. The main reason is that you must be really comfortable with basic
algebra, calculus, and parts of elementary differential equations. Appendices
A and B are included to have you review basic prerequisite material before
you get involved in the details of pde methods. The pde concepts are not
hard, but there are a lot of little details you must have at your command, and
you must be proficient in your background to obtain a real working under-
standing of the subject. You must do as many problems as your time allows!
“She/he who does the most problems wins.” This means that you do the
exercises buried in the notes, and not just do assigned homework problems.

To put some perspective on the subject matter discussed in this course,
keep in mind that a lot of physical modeling arise as nonlinear pdes, or sys-
tems of such equations. Even when a model problem arises that has a linear,
scalar equation, it is often spatially multi-dimensional. Our study of pdes in
this text is mostly about linear, scalar, pdes of one space variable. We must
learn to “walk before we can run.” You need to get a firm understanding of the
solution approach in an analytically simpler case. But many techniques we
discuss in the course are readily extended to the spatially multidimensional
case. There are plenty of problems around of major physical significance that
our methodologies are directly applicable to, but also keep in mind that most
differential equations, ordinary and partial, are not solvable in closed-form.

However, exact (closed-form) solutions of differential equations plays an
important role in the proper understanding of qualitative features of many
phenomena and processes, and allow understanding of the mechanisms that
give rise to such observed behavior as shock waves, energy transfer, pattern
formation, traveling waves, bifurcation phenomena, phase transitions, stabil-
ity and vibration phenomena, etc. Even those special exact solutions that do
not have a clear physical meaning can be used as “test problems” to verify
the consistency, and estimate errors, of various numerical and approximate
analytical methods.

2 “Strategic Principles”

There are two overriding “principles” we adhere to in the development of this
pde course as presented in these Notes.

Principle 1: We will (almost) always boil down our solution approach by



reducing the partial differential equation problem to solving ordinary differ-
ential equation (ode) problems.

This is why you must become good, and quick, about solving ode prob-
lems.

Ezxample: For Laplace’s equation % + 22712‘ = 0 we approach this equation
by separating variables, assuming the equation is defined on a bounded (e.g.
rectangular) domain. This entails writing u(x,y) = f(x)g(y) and substitut-
ing this form into the pde to obtain odes for the single variable functions f
and g.

Ju

Example: You'll find out that a solution form for the heat equation % —

D% = 0 for —oo < z < oo can be given by a function of a single variable,
that is u(x,t) = f(z), where z = 57+ Substituting this representation into

the heat equation gives, after using the chain rule several times, %%—%% =0;
that is, deriving a general solution means solving an ode. (In this case we

assume a spatially unbounded domain.)

Principle 2: When presented with a new problem, we try to reduce it
to a problem we have already solved.

Ezxample: We go through and solve the heat equation g—? — D% = 0 in
various situations. But what if we are faced with the diffusion-decay equa-
tion 2¢ — D% + ku = 07 We can write u(x,t) = e *w(z,t) and show
the w solves the heat equation %—l: - Dg%’ = 0. Since we have worked with
this equation previously, finding w implies we have solved for u because they

differ only by an exponential factor.

3 Remarks to Instructors on the Structure of
these Notes

There are now a number of excellent books on the introduction of partial
differential equations, so why consider these Notes?

The author has tried various textbooks in courses, but often the students
found the material too hard or dense, as presented, or not enough examples
of worked problems. We have tried to gear the level of exposition in these



Notes to accommodate the backgrounds of our students (to a typical state
residential research university). We have also often provided exercises right
after discussion of a topic, and not just put exercises at the end of a chapter.
Hopefully this aids self-study of the material. While not getting carried away
with a large number of exercises, we have tried a mix of standard and not so
standard exercises, with the belief that students should do all the exercises
in the Notes for maximum comprehension of the material.

Most undergraduate mathematics programs have a single semester or
quarter course in introductory pdes, rather that a year sequence. Textbooks
are getting bulkier (and very expensive) introducing a year or more worth
of material. To hold costs down, we wanted a single semester’s worth of
core material, based on many years experience teaching such a course. That
also meant we wanted to organize the core material in a way that suited our
pedagogical approach to the subject. This, of course, forces compromises
as to what is included in the course, and what is excluded, and not all
instructors are going to agree with the author’s decisions on this matter.
However, instructors are always free to supplement any text material with
their own material. We have included a sequence of appendices on topics
not elaborated on in the main body of the Notes, but the 24 chapters of the
main text make an appropriate, if intense, 15 week course.

One particular topic omission concerns numerical methods for pdes. While
this is an important topic, there is no way to include a meaningful discussion
without draconian cuts to core analytical material. Students should get a
good understanding of solution behavior of some elementary pdes and how
to transform some problems to other problems. But students should be en-
courage to take a follow-up course where they get experience solving pdes
numerically.

A main point in the author developing these notes, however, is the oppor-
tunity to structure the content in a more appealing way. This is, of course, a
matter of personal taste, but let us make a defense of the sequence of topics,
and what we consider is important material to have in this first course.

First, we do not believe a first course in pdes should be just a separation-
of-variables course. This drives us to first consider problems with no finite
spatial boundaries (initial-value problems) and to interpret solution behavior
without interference of boundary affects. This also allows us to discuss impor-
tant transformations, including the Fourier transform. Later we add a single
boundary, which allows us to use the Laplace transform, a topic students
should had been introduced to in their prerequisite ode course. Then we
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turn to more standard boundary-value problems for the heat, wave, Laplace
and Poisson equations. For the initial-value problems (Cauchy problems) we
also compare solution behavior between heat and wave solutions in a sum-
mary way before introducing boundaries, again trying to balance work on
solving techniques with interpretation of solution characteristics for different
equations.

Since the classes of equations discussed in this course are important, but
limited, there is a need to give some indication how they arise. We consider
this very important, and we tie formulation of various equations together
through use of the conservation of mass principle. This goes together with
constant reminder that pdes are associated with applications, and this is
reflected in a large fraction of the exercises. This is appreciated by most
of the students. Also, from a pedagogical viewpoint, we mostly restrict our
discussion to (scalar) equations of two independent variables (one space and
one time, or two space variables). Most solution techniques discussed readily
extend to equations of higher dimension, but this does not generally introduce
new ideas that can be elaborated on at this level of course. The students are
challenged enough with second order problems in two independent variables,
and our main goal is to communicate key ideas in an effective way without
getting too lost in a forest of calculation.

A word about the order of topics is needed, since this is a driver in
the motivation for creating these notes in the first place. We start with
first-order Cauchy problems (linear and semi linear) because one can tie the
solution method to some geometry, the characteristic method of solution
gives a straightforward recipe for students to follow, and we can immediately
relate first-order problems to some interesting applications. First-order linear
problems also provides a bridge to the wave equation (d’Alembert’s solution)
and facilitates interpretation of the solution form. So we discuss the Cauchy
problem for the wave equation before we discuss it for the heat equation.
Based on discussions I have had with students after the course and doing a
project with other faculty members, I have included a few topics not normally
included in a semester course. This includes a brief discussion of the effects of
adding lower order terms to heat and wave equations, and exposing students
to a higher order problem, namely the unforced and forced Bernoulli-Euler
beam equation.

Finally, I never consider these Notes as static. If you have suggestions to
improve the exposition, or find errors, the author would love to hear from
you.



4 A Warning

The following sequence of lecture notes, with appendices, which we’ll just
refer to as my ‘Notes’, are revised and copyrighted (©)2013-2015. They are
made available for students enrolled in UMBC’s Math 404 course. They are
provided as study material for private use and can not be used or distributed
in any other manner without the author’s written permission.
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